

1 of 2

- Derive Laplace and Poisson's equation starting from the Gauss's law and also write 6 a Laplace's equation in Cartesian, cylindrical and spherical coordinate system. (08 Marks)
 - b. Evaluate both sides of the Stoke's theorem for the field $\overline{H} = 6xy \ \hat{a}x 3y^2 \hat{a}y \ A/m$ and the rectangular path around the region $2 \le x \le 5$, $-1 \le y \le 1$, z = 0 let the positive direction of (08 Marks) ds be â,.

Module-4

- The field B = $(-2a_x + 3a_y + 4\hat{a}_z)mT$ is present in free space. Find the vector force exerted a. on a straight wire carrying a current of 12A in the a_{AB} direction. Given A(1, 1, 1,) and (04 Marks) B(2, 1, 1).
 - Two differential current elements , $I_1 \Delta L_1 = 3 \times 10^{-6}$ A-m at P1(1,0,0) and b. $I_2\Delta L_2 = 3 \times 10^{-6} (-0.5 \hat{a}_x + 0.4 \hat{a}_y + 0.3 \hat{a}_z)$ A-m at P2(2, 2, 2) are located in free space. Find (06 Marks) the vector force exerted on $I_2\Delta L_2$ by $I_1\Delta L_1$.
 - Find the magnetization in a magnetic material where C.
 - i)
 - μ r = 22, there are 8.3 × 10²² atoms/m, and each atom has a dipole moment of 4.5×10²⁷ A/m². ii)
 - iii) $B = 300 \mu T \times \chi_m = 15$.

7

OR

Derive the Magnetic Boundary Condition? 8 a.

- Let the permittivity is 5μ H/m in the region 1 where x < 0 and 20 μ H/m in the region 2 b. where x > 0, and if $H = (300a_x - 400a_y + 500\hat{a}_z) \text{ A/m}$ and if there is a surface current density $K = (150 \hat{a}_v - 200 \hat{a}_z) A/m at x = 0.$
 - (06 Marks) Find i) $| H_{t_i} |$ ii) $| H_{N_i} |$ iii) $| H_{t_i} |$
- Derive the expression for the energy density in a magnetic field. (04 Marks) C.

Module-5

- Explain Displacement current density and conduction current density. (04 Marks) 9 a. b. List Maxwell's equations for steady and time varying fields in ii) Integral from. (06 Marks) Point form i)
 - $\frac{1}{2}$ cos x cos t \hat{a}_z satisfy Maxwell's equations? c. Do the fields $\vec{E} = E_m \sin x \sin t \hat{a}_y$ and $\vec{H} =$ (06 Marks)

OR

What is Forward travelling wave and Backward travelling wave in free space? (02 Marks) 10 a. A uniform plane wave in free space is given by $E_s = 200 |\underline{30}^\circ \cdot e^{-j250z} \hat{a}_x V/m$. b.

(06 Marks) Find β , w, f, λ , η , $|\dot{H}|$. State and prove Poynting theorem. (08 Marks) C.

2 of 2

(06 Marks)

(06 Marks)